Mark Scheme (Results) J anuary 2011

GCE

GCE Further Pure Mathematics FP1 (6667) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026332
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

edexcel

J anuary 2011
 Further Pure Mathematics FP1 6667
 Mark Scheme

Question Number	Scheme		Marks
(a)	$\begin{aligned} & z=5-3 i, \quad w=2+2 i \\ & z^{2}=(5-3 i)(5-3 i) \end{aligned}$		
	$\begin{aligned} & =25-15 i-15 i+9 i^{2} \\ & =25-15 i-15 i-9 \end{aligned}$	An attempt to multiply out the brackets to give four terms (or four terms implied). $z w$ is M0	M1
	$=16-30 \mathrm{i}$	$\begin{array}{r} 16-30 \mathrm{i} \\ \text { Answer only } 2 / 2 \\ \hline \end{array}$	A1 (2)
(b)	$\frac{z}{w}=\frac{(5-3 i)}{(2+2 \mathrm{i})}$		
	$=\frac{(5-3 \mathrm{i})}{(2+2 \mathrm{i})} \times \frac{(2-2 \mathrm{i})}{(2-2 \mathrm{i})}$	Multiplies $\frac{z}{w}$ by $\frac{(2-2 \mathrm{i})}{(2-2 \mathrm{i})}$	M1
	$=\frac{10-10 \mathrm{i}-6 \mathrm{i}-6}{4+4}$	Simplifies realising that a real number is needed on the denominator and applies $\mathrm{i}^{2}=-1$ on their numerator expression and denominator expression.	M1
	$=\frac{4-16 i}{8}$		
	$=\frac{1}{2}-2 \mathrm{i}$	$\frac{1}{2}-2$ i or $a=\frac{1}{2}$ and $b=-2$ or equivalent Answer as a single fraction A0	A1
			$\begin{gathered} (3) \\ {[5]} \end{gathered}$

Question Number	Scheme		Marks
2. (a)	$\begin{aligned} \mathbf{A} & =\left(\begin{array}{ll} 2 & 0 \\ 5 & 3 \end{array}\right), \mathbf{B}=\left(\begin{array}{cc} -3 & -1 \\ 5 & 2 \end{array}\right) \\ \mathbf{A B} & =\left(\begin{array}{ll} 2 & 0 \\ 5 & 3 \end{array}\right)\left(\begin{array}{cc} -3 & -1 \\ 5 & 2 \end{array}\right) \\ & =\left(\begin{array}{cc} 2(-3)+0(5) & 2(-1)+0(2) \\ 5(-3)+3(5) & 5(-1)+3(2) \end{array}\right) \\ & =\left(\begin{array}{cc} -6 & -2 \\ 0 & 1 \end{array}\right) \end{aligned}$	A correct method to multiply out two matrices. Can be implied by two out of four correct elements. Any three elements correct Correct answer Correct answer only 3/3	A1 A1 (3)
(b)	Reflection; about the y-axis.	$y \text {-axis } \frac{\text { Reflection }}{(\text { or } x=0 .)}$	M1 A1 (2)
(c)	$\mathbf{C}^{100}=\mathbf{I}=\underline{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}$	$\underline{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}$ or I	B1 (1) [6]

edexcel

Question Number	Scheme		Marks
3. (a)	$\begin{aligned} & \mathrm{f}(x)=5 x^{2}-4 x^{\frac{3}{2}}-6, \quad x \geqslant 0 \\ & \mathrm{f}(1.6)=-1.29543081 \ldots \\ & \mathrm{f}(1.8)=0.5401863372 \ldots \end{aligned}$ $\left.\begin{array}{rl} \frac{\alpha-1.6}{" 1.29543081 \ldots . . "}=\frac{1.8-\alpha}{" 0.5401863372 \ldots . . "} \\ \alpha & =1.6+\left(\frac{}{" 1.29543081 \ldots . . "}\right. \\ " 0.5401863372 \ldots . . .+1.29543081 \ldots . . " \end{array}\right) 0.20$	awrt -1.30 awrt 0.54 Correct linear interpolation method with signs correct. Can be implied by working below. awrt 1.741 Correct answer seen 4/4	B1 B1 M1 A1 (4)
(b)	$\mathrm{f}^{\prime}(x)=10 x-6 x^{\frac{1}{2}}$	At least one of $\pm a x$ or $\pm b x^{\frac{1}{2}}$ correct. Correct differentiation.	M1 A1 (2)
(c)	$\begin{aligned} \mathrm{f}(1.7) & =-0.4161152711 \ldots \\ \mathrm{f}^{\prime}(1.7) & =9.176957114 \ldots \\ \alpha_{2} & =1.7-\left(\frac{"-0.4161152711 \ldots . .}{" 9.176957114 \ldots}\right) \\ & =1.745343491 \ldots \\ & =1.745(3 \mathrm{dp}) \end{aligned}$	$\begin{array}{r} \mathrm{f}(1.7)=\text { awrt }-0.42 \\ \mathrm{f}^{\prime}(1.7)=\text { awrt } 9.18 \end{array}$ Correct application of Newton- Raphson formula using their values.	B1 B1 M1 Al cao (4) [10]

Question Number	Scheme		Marks
4. (a)	$\begin{aligned} & z^{2}+p z+q=0, \quad z_{1}=2-4 i \\ & z_{2}=2+4 \mathrm{i} \end{aligned}$	$2+4 i$	
(b)	$\begin{aligned} & (z-2+4 \mathrm{i})(z-2-4 \mathrm{i})=0 \\ & \Rightarrow z^{2}-2 z-4 \mathrm{i} z-2 z+4-8 \mathrm{i}+4 \mathrm{i} z-8 \mathrm{i}+16=0 \\ & \Rightarrow z^{2}-4 z+20=0 \end{aligned}$	An attempt to multiply out brackets of two complex factors and no i^{2}. Any one of $p=-4, q=20$. Both $p=-4, q=20$. $\Rightarrow z^{2}-4 z+20=0 \text { only } 3 / 3$	

edexcel

Question Number	Scheme		Marks
$\begin{array}{ll}5 & \\ & \\ & \text { (a) }\end{array}$	$\begin{aligned} & \sum_{r=1}^{n} r(r+1)(r+5) \\ & =\sum_{r=1}^{n} r^{3}+6 r^{2}+5 r \\ & =\frac{1}{4} n^{2}(n+1)^{2}+6 \cdot \frac{1}{6} n(n+1)(2 n+1)+5 \cdot \frac{1}{2} n(n+1) \\ & =\frac{1}{4} n^{2}(n+1)^{2}+n(n+1)(2 n+1)+\frac{5}{2} n(n+1) \\ & =\frac{1}{4} n(n+1)(n(n+1)+4(2 n+1)+10) \\ & =\frac{1}{4} n(n+1)\left(n^{2}+n+8 n+4+10\right) \\ & =\frac{1}{4} n(n+1)\left(n^{2}+9 n+14\right) \end{aligned}$	Multiplying out brackets and an attempt to use at least one of the standard formulae correctly. Correct expression. Factorising out at least $n(n+1)$ Correct 3 term quadratic factor	M1 A1 dM1 A1
	$=\frac{1}{4} n(n+1)(n+2)(n+7) *$	Correct proof. No errors seen.	A1 (5)
(b)	$\begin{aligned} & S_{n}=\sum_{r=20}^{50} r(r+1)(r+5) \\ & =S_{50}-S_{19} \\ & =\frac{1}{4}(50)(51)(52)(57)-\frac{1}{4}(19)(20)(21)(26) \\ & =1889550-51870 \\ & =1837680 \end{aligned}$	Use of $S_{50}-S_{19}$ 1837680 Correct answer only $2 / 2$	M1 A1 (2) [7]

Question Number	Scheme		Marks
6. (a)	$\begin{aligned} & C: y^{2}=36 x \Rightarrow a=\frac{36}{4}=9 \\ & S(9,0) \end{aligned}$	$(9,0)$	$\begin{array}{\|l\|l\|} \hline & \text { B1 } \\ \hline \end{array}$
(b)	$x+9=0$ or $x=-9$	$x+9=0 \text { or } x=-9$ or ft using their a from part (a).	$\mathrm{B} 1 \sqrt{ }$ (1)
(c)	$P S=25 \Rightarrow \underline{Q P=25}$	Either 25 by itself or $P Q=25$. Do not award if just $P S=25$ is seen.	B1 (1)
(d)	x-coordinate of $P \Rightarrow x=25-9=16$ $y^{2}=36(16)$ $y=\sqrt{576}=\underline{24}$ Therefore $P(16,24)$	$x=16$ Substitutes their x-coordinate into equation of C. $y=24$	B1 $\sqrt{ }$ M1 A1 (3)
(e)	Area $O S P Q=\frac{1}{2}(9+25) 24$ $=\underline{408}(\text { units })^{2}$	$\frac{1}{2}($ their $a+25)($ their y) or rectangle and 2 distinct triangles, correct for their values.	M1 A1 (2) [8]

Question Number	Scheme		Marks
7. (a)		Correct quadrant with $(-24,-7)$ indicated.	B1
(b)	$\begin{aligned} \arg z & =-\pi+\tan ^{-1}\left(\frac{7}{24}\right) \\ & =-2.857798544 \ldots=-2.86(2 \mathrm{dp}) \end{aligned}$	$\tan ^{-1}\left(\frac{7}{24}\right) \text { or } \tan ^{-1}\left(\frac{24}{7}\right)$ awrt -2.86 or awrt 3.43	M1 A1 (2)
(c)	$\left.\begin{array}{l} \|w\|=4, \arg w=\frac{5 \pi}{6} \Rightarrow r=4, \theta=\frac{5 \pi}{6} \\ w \end{array}=r \cos \theta+\mathrm{i} r \sin \theta\right] \begin{aligned} w & =4 \cos \left(\frac{5 \pi}{6}\right)+4 \mathrm{i} \sin \left(\frac{5 \pi}{6}\right) \\ & =4\left(\frac{-\sqrt{3}}{2}\right)+4 \mathrm{i}\left(\frac{1}{2}\right) \\ & =-2 \sqrt{3}+2 \mathrm{i} \\ a & =-2 \sqrt{3}, b=2 \end{aligned}$	Attempt to apply $r \cos \theta+\mathrm{i} r \sin \theta$. Correct expression for w. either $-2 \sqrt{3}+2 \mathrm{i}$ or awrt $-3.5+2 \mathrm{i}$	M1 A1 A1 (3)
(d)	$\|z\|=\sqrt{(-24)^{2}+(-7)^{2}}=\underline{25}$ $\begin{aligned} \|z w\| & =\|z\| \times\|w\|=(25)(4) \\ & =\underline{100} \end{aligned}$	$\begin{array}{r} \underline{\|z\|=25} \text { or } \\ z w=(48 \sqrt{3}+14)+(14 \sqrt{3}-48) \mathrm{i} \text { or } \\ \text { awrt } 97.1-23.8 \mathrm{i} \end{array}$ Applies $\|z\| \times\|w\|$ or $\|z w\|$	B1 M1 A1 (3) [9]

Question Number	Scheme		Marks
8. (a)	$\begin{align*} & \mathbf{A}=\left(\begin{array}{cc} 2 & -2 \\ -1 & 3 \end{array}\right) \\ & \operatorname{det} \mathbf{A}=2(3)-(-1)(-2)=6-2=\underline{4} \tag{1} \end{align*}$	4	$\underline{\text { B1 }}$
(b)	$\mathbf{A}^{-1}=\frac{1}{4}\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$	$\begin{array}{r} \frac{1}{\operatorname{det} \mathbf{A}}\left(\begin{array}{ll} 3 & 2 \\ 1 & 2 \end{array}\right) \\ \frac{1}{4}\left(\begin{array}{ll} 3 & 2 \\ 1 & 2 \end{array}\right) \end{array}$	M1 A1 (2)
(c)	$\operatorname{Area}(R)=\frac{72}{4}=\underline{18}(\text { units })^{2}$	$\frac{72}{\text { their } \operatorname{det} \mathbf{A}} \text { or } 72(\text { their } \operatorname{det} \mathbf{A})$ 18 or ft answer.	M1 A1 $\sqrt{ }$ (2)
(d)	$\begin{aligned} \mathbf{A R} & =\mathbf{S} \Rightarrow \mathbf{A}^{-1} \mathbf{A R}=\mathbf{A}^{-1} \mathbf{S} \Rightarrow \mathbf{R}=\mathbf{A}^{-1} \mathbf{S} \\ \mathbf{R} & =\frac{1}{4}\left(\begin{array}{ll} 3 & 2 \\ 1 & 2 \end{array}\right)\left(\begin{array}{ccc} 0 & 8 & 12 \\ 4 & 16 & 4 \end{array}\right) \\ & =\frac{1}{4}\left(\begin{array}{lll} 8 & 56 & 44 \\ 8 & 40 & 20 \end{array}\right) \\ & =\left(\begin{array}{lll} 2 & 14 & 11 \\ 2 & 10 & 5 \end{array}\right) \end{aligned}$ Vertices are $(2,2),(14,10)$ and $(11,5)$.	At least one attempt to apply \mathbf{A}^{-1} by any of the three vertices in \mathbf{S}. At least one correct column o.e. At least two correct columns o.e. All three coordinates correct.	M1 A1 $\sqrt{ }$ A1 A1 (4) [9]

edexcel

Question Number	Scheme		Marks
9.	$\begin{aligned} & u_{n+1}=4 u_{n}+2, \quad u_{1}=2 \text { and } u_{n}=\frac{2}{3}\left(4^{n}-1\right) \\ & n=1 ; \quad u_{1}=\frac{2}{3}\left(4^{1}-1\right)=\frac{2}{3}(3)=2 \end{aligned}$ So u_{n} is true when $n=1$. Assume that for $n=k$ that, $u_{k}=\frac{2}{3}\left(4^{k}-1\right)$ is true for $k \in \mathbb{Z}^{+}$. Then $u_{k+1}=4 u_{k}+2$	Check that $u_{n}=\frac{2}{3}\left(4^{n}-1\right)$ yields 2 when $n=1$.	B1
	$\begin{aligned} & =4\left(\frac{2}{3}\left(4^{k}-1\right)\right)+2 \\ & =\frac{8}{3}(4)^{k}-\frac{8}{3}+2 \\ & =\frac{2}{3}(4)(4)^{k}-\frac{2}{3} \\ & =\frac{2}{3} 4^{k+1}-\frac{2}{3} \end{aligned}$	Substituting $u_{k}=\frac{2}{3}\left(4^{k}-1\right)$ into $u_{n+1}=4 u_{n}+2 .$ An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1 M1
	$=\frac{2}{3}\left(4^{k+1}-1\right)$ Therefore, the general statement, $u_{n}=\frac{2}{3}\left(4^{n}-1\right)$ is true when $n=k+1$. (As u_{n} is true for $n=1$,) then u_{n} is true for all positive integers by mathematical induction	$\frac{2}{3}\left(4^{k+1}-1\right)$ Require 'True when $\mathrm{n}=1$ ', 'Assume true when $n=k$ ' and 'True when $n=k+1$ ' then true for all n o.e.	A1 A1
			$\begin{gathered} (5) \\ {[5]} \end{gathered}$

edexcel

Question Number	Scheme		Marks
10.	$x y=36 \text { at }\left(6 t, \frac{6}{t}\right) .$ $y=\frac{36}{x}=36 x^{-1} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-36 x^{-2}=-\frac{36}{x^{2}}$ $\operatorname{At}\left(6 t, \frac{6}{t}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{36}{(6 t)^{2}}$ So, $m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{t^{2}}$ T: $y-\frac{6}{t}=-\frac{1}{t^{2}}(x-6 t)$ $\mathbf{T}: y-\frac{6}{t}=-\frac{1}{t^{2}} x+\frac{6}{t}$ $\mathbf{T}: y=-\frac{1}{t^{2}} x+\frac{6}{t}+\frac{6}{t}$ $\mathbf{T}: y=-\frac{1}{t^{2}} x+\frac{12}{t} *$	An attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$. $\text { or } \frac{\mathrm{d} y}{\mathrm{~d} t} \text { and } \frac{\mathrm{d} x}{\mathrm{~d} t}$ An attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$. in terms of t $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{t^{2}} *$ Must see working to award here Applies $y-\frac{6}{t}=$ their $m_{T}(x-6 t)$	M1 M1 A1 M1 A1 cso (5)
(b)	Both \mathbf{T} meet at $(-9,12)$ gives $\begin{aligned} & 12=-\frac{1}{t^{2}}(-9)+\frac{12}{t} \\ & 12=\frac{9}{t^{2}}+\frac{12}{t} \quad\left(\times t^{2}\right) \\ & 12 t^{2}=9+12 t \\ & 12 t^{2}-12 t-9=0 \\ & 4 t^{2}-4 t-3=0 \\ & (2 t-3)(2 t+1)=0 \\ & t=\frac{3}{2},-\frac{1}{2} \\ & t=\frac{3}{2} \Rightarrow x=6\left(\frac{3}{2}\right)=9, \quad y=\frac{6}{\left(\frac{3}{2}\right)}=4 \Rightarrow(9,4) \\ & t=-\frac{1}{2} \Rightarrow x=6\left(-\frac{1}{2}\right)=-3, \\ & y=\frac{6}{\left(-\frac{1}{2}\right)}=-12 \Rightarrow(-3,-12) \end{aligned}$	Substituting (-9,12) into T. An attempt to form a "3 term quadratic" An attempt to factorise. $t=\frac{3}{2},-\frac{1}{2}$ An attempt to substitute either their $t=\frac{3}{2}$ or their $t=-\frac{1}{2}$ into x and y. At least one of $(9,4)$ or $(-3,-12)$. Both $(9,4)$ and $(-3,-12)$.	M1 M1 M1 A1 M1 A1 A1 [12]

edexcel

Other Possible Solutions

edexcel

Question Number	Scheme		Marks
Aliter 7. (c) Way 2	$\begin{aligned} & \|w\|=4, \arg w=\frac{5 \pi}{6} \text { and } w=a+\mathrm{i} b \\ & \|w\|=4 \Rightarrow a^{2}+b^{2}=16 \\ & \arg w=\frac{5 \pi}{6} \Rightarrow \arctan \left(\frac{b}{a}\right)=\frac{5 \pi}{6} \Rightarrow \frac{b}{a}=-\frac{1}{\sqrt{3}} \\ & a=-\sqrt{3} b \Rightarrow a^{2}=3 b^{2} \end{aligned}$ So, $\quad 3 b^{2}+b^{2}=16 \Rightarrow b^{2}=4$ $\Rightarrow b= \pm 2 \text { and } a=\mp 2 \sqrt{3}$ As w is in the second quadrant $\begin{aligned} & w=-2 \sqrt{3}+2 \mathrm{i} \\ & a=-2 \sqrt{3}, b=2 \end{aligned}$	Attempts to write down an equation in terms of a and b for either the modulus or the argument of w. Either $a^{2}+b^{2}=16$ or $\frac{b}{a}=-\frac{1}{\sqrt{3}}$ either $-2 \sqrt{3}+2 \mathrm{i}$ or awrt $-3.5+2 \mathrm{i}$	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \\ \\ \\ \\ \\ \text { A1 } & \\ \\ & \text { (3) }\end{array}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026332 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WCIV 7BH

